Model Gallery

Discover and install AI models from our curated collection

1075 models available
1 repositories
Documentation

Find Your Perfect Model

Filter by Model Type

Browse by Tags

lfm2-vl-450m
LFM2‑VL is Liquid AI's first series of multimodal models, designed to process text and images with variable resolutions. Built on the LFM2 backbone, it is optimized for low-latency and edge AI applications. We're releasing the weights of two post-trained checkpoints with 450M (for highly constrained devices) and 1.6B (more capable yet still lightweight) parameters. 2× faster inference speed on GPUs compared to existing VLMs while maintaining competitive accuracy Flexible architecture with user-tunable speed-quality tradeoffs at inference time Native resolution processing up to 512×512 with intelligent patch-based handling for larger images, avoiding upscaling and distortion

Repository: localaiLicense: lfm1.0

lfm2-vl-1.6b
LFM2‑VL is Liquid AI's first series of multimodal models, designed to process text and images with variable resolutions. Built on the LFM2 backbone, it is optimized for low-latency and edge AI applications. We're releasing the weights of two post-trained checkpoints with 450M (for highly constrained devices) and 1.6B (more capable yet still lightweight) parameters. 2× faster inference speed on GPUs compared to existing VLMs while maintaining competitive accuracy Flexible architecture with user-tunable speed-quality tradeoffs at inference time Native resolution processing up to 512×512 with intelligent patch-based handling for larger images, avoiding upscaling and distortion

Repository: localaiLicense: lfm1.0

lfm2-1.2b
LFM2‑VL is Liquid AI's first series of multimodal models, designed to process text and images with variable resolutions. Built on the LFM2 backbone, it is optimized for low-latency and edge AI applications. We're releasing the weights of two post-trained checkpoints with 450M (for highly constrained devices) and 1.6B (more capable yet still lightweight) parameters. 2× faster inference speed on GPUs compared to existing VLMs while maintaining competitive accuracy Flexible architecture with user-tunable speed-quality tradeoffs at inference time Native resolution processing up to 512×512 with intelligent patch-based handling for larger images, avoiding upscaling and distortion

Repository: localaiLicense: lfm1.0

liquidai_lfm2-350m-extract
Based on LFM2-350M, LFM2-350M-Extract is designed to extract important information from a wide variety of unstructured documents (such as articles, transcripts, or reports) into structured outputs like JSON, XML, or YAML. Use cases: Extracting invoice details from emails into structured JSON. Converting regulatory filings into XML for compliance systems. Transforming customer support tickets into YAML for analytics pipelines. Populating knowledge graphs with entities and attributes from unstructured reports. You can find more information about other task-specific models in this blog post.

Repository: localaiLicense: lfm1.0

liquidai_lfm2-1.2b-extract
Based on LFM2-1.2B, LFM2-1.2B-Extract is designed to extract important information from a wide variety of unstructured documents (such as articles, transcripts, or reports) into structured outputs like JSON, XML, or YAML. Use cases: Extracting invoice details from emails into structured JSON. Converting regulatory filings into XML for compliance systems. Transforming customer support tickets into YAML for analytics pipelines. Populating knowledge graphs with entities and attributes from unstructured reports.

Repository: localaiLicense: lfm1.0

liquidai_lfm2-1.2b-rag
Based on LFM2-1.2B, LFM2-1.2B-RAG is specialized in answering questions based on provided contextual documents, for use in RAG (Retrieval-Augmented Generation) systems. Use cases: Chatbot to ask questions about the documentation of a particular product. Custom support with an internal knowledge base to provide grounded answers. Academic research assistant with multi-turn conversations about research papers and course materials.

Repository: localaiLicense: lfm1.0

liquidai_lfm2-1.2b-tool
Based on LFM2-1.2B, LFM2-1.2B-Tool is designed for concise and precise tool calling. The key challenge was designing a non-thinking model that outperforms similarly sized thinking models for tool use. Use cases: Mobile and edge devices requiring instant API calls, database queries, or system integrations without cloud dependency. Real-time assistants in cars, IoT devices, or customer support, where response latency is critical. Resource-constrained environments like embedded systems or battery-powered devices needing efficient tool execution.

Repository: localaiLicense: lfm1.0

liquidai_lfm2-350m-math
Based on LFM2-350M, LFM2-350M-Math is a tiny reasoning model designed for tackling tricky math problems.

Repository: localaiLicense: lfm1.0

liquidai_lfm2-8b-a1b
LFM2 is a new generation of hybrid models developed by Liquid AI, specifically designed for edge AI and on-device deployment. It sets a new standard in terms of quality, speed, and memory efficiency. We're releasing the weights of our first MoE based on LFM2, with 8.3B total parameters and 1.5B active parameters. LFM2-8B-A1B is the best on-device MoE in terms of both quality (comparable to 3-4B dense models) and speed (faster than Qwen3-1.7B). Code and knowledge capabilities are significantly improved compared to LFM2-2.6B. Quantized variants fit comfortably on high-end phones, tablets, and laptops.

Repository: localaiLicense: lfm1.0

kokoro
Kokoro is an open-weight TTS model with 82 million parametrs. Despite its lightweight architecture, it delivers comparable quality to larger models while being significantly faster and more cost-efficient. With Apache-licensed weights, Kokoro can be deployed anywhere from production environments to personal projects.

Repository: localaiLicense: apache-2.0

kitten-tts
Kitten TTS is an open-source realistic text-to-speech model with just 15 million parameters, designed for lightweight deployment and high-quality voice synthesis.

Repository: localaiLicense: apache-2.0

gpt-oss-20b
Welcome to the gpt-oss series, OpenAI’s open-weight models designed for powerful reasoning, agentic tasks, and versatile developer use cases. We’re releasing two flavors of the open models: gpt-oss-120b — for production, general purpose, high reasoning use cases that fits into a single H100 GPU (117B parameters with 5.1B active parameters) gpt-oss-20b — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our harmony response format and should only be used with the harmony format as it will not work correctly otherwise. This model card is dedicated to the smaller gpt-oss-20b model. Check out gpt-oss-120b for the larger model. Highlights Permissive Apache 2.0 license: Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. Configurable reasoning effort: Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. Full chain-of-thought: Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. Fine-tunable: Fully customize models to your specific use case through parameter fine-tuning. Agentic capabilities: Use the models’ native capabilities for function calling, web browsing, Python code execution, and Structured Outputs. Native MXFP4 quantization: The models are trained with native MXFP4 precision for the MoE layer, making gpt-oss-120b run on a single H100 GPU and the gpt-oss-20b model run within 16GB of memory.

Repository: localaiLicense: apache-2.0

gpt-oss-120b
Welcome to the gpt-oss series, OpenAI’s open-weight models designed for powerful reasoning, agentic tasks, and versatile developer use cases. We’re releasing two flavors of the open models: gpt-oss-120b — for production, general purpose, high reasoning use cases that fits into a single H100 GPU (117B parameters with 5.1B active parameters) gpt-oss-20b — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our harmony response format and should only be used with the harmony format as it will not work correctly otherwise. This model card is dedicated to the smaller gpt-oss-20b model. Check out gpt-oss-120b for the larger model. Highlights Permissive Apache 2.0 license: Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. Configurable reasoning effort: Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. Full chain-of-thought: Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. Fine-tunable: Fully customize models to your specific use case through parameter fine-tuning. Agentic capabilities: Use the models’ native capabilities for function calling, web browsing, Python code execution, and Structured Outputs. Native MXFP4 quantization: The models are trained with native MXFP4 precision for the MoE layer, making gpt-oss-120b run on a single H100 GPU and the gpt-oss-20b model run within 16GB of memory.

Repository: localaiLicense: apache-2.0

openai_gpt-oss-20b-neo
These are NEO Imatrix GGUFs, NEO dataset by DavidAU. NEO dataset improves overall performance, and is for all use cases. Example output below (creative), using settings below. Model also passed "hard" coding test too (6 experts); no issues (IQ4_NL). (Forcing the model to create code with no dependencies and limits of coding short cuts, with multiple loops, and in real time with no blocking in a language that does not support it normally.) Due to quanting issues with this model (which result in oddball quant sizes / mixtures), only TESTED quants will be uploaded (at the moment).

Repository: localaiLicense: apache-2.0

huihui-ai_huihui-gpt-oss-20b-bf16-abliterated
This is an uncensored version of unsloth/gpt-oss-20b-BF16 created with abliteration (see remove-refusals-with-transformers to know more about it).

Repository: localaiLicense: apache-2.0

openai-gpt-oss-20b-abliterated-uncensored-neo-imatrix
These are NEO Imatrix GGUFs, NEO dataset by DavidAU. NEO dataset improves overall performance, and is for all use cases. This model uses Huihui-gpt-oss-20b-BF16-abliterated as a base which DE-CENSORS the model and removes refusals. Example output below (creative; IQ4_NL), using settings below. This model can be a little rough around the edges (due to abliteration) ; make sure you see the settings below for best operation. It can also be creative, off the shelf crazy and rational too. Enjoy!

Repository: localaiLicense: apache-2.0

rfdetr-base
RF-DETR is a real-time, transformer-based object detection model architecture developed by Roboflow and released under the Apache 2.0 license. RF-DETR is the first real-time model to exceed 60 AP on the Microsoft COCO benchmark alongside competitive performance at base sizes. It also achieves state-of-the-art performance on RF100-VL, an object detection benchmark that measures model domain adaptability to real world problems. RF-DETR is fastest and most accurate for its size when compared current real-time objection models. RF-DETR is small enough to run on the edge using Inference, making it an ideal model for deployments that need both strong accuracy and real-time performance.

Repository: localaiLicense: apache-2.0

dream-org_dream-v0-instruct-7b
This is the instruct model of Dream 7B, which is an open diffusion large language model with top-tier performance.

Repository: localaiLicense: apache-2.0

huggingfacetb_smollm3-3b
SmolLM3 is a 3B parameter language model designed to push the boundaries of small models. It supports 6 languages, advanced reasoning and long context. SmolLM3 is a fully open model that offers strong performance at the 3B–4B scale. The model is a decoder-only transformer using GQA and NoPE (with 3:1 ratio), it was pretrained on 11.2T tokens with a staged curriculum of web, code, math and reasoning data. Post-training included midtraining on 140B reasoning tokens followed by supervised fine-tuning and alignment via Anchored Preference Optimization (APO).

Repository: localaiLicense: apache-2.0

moondream2-20250414
Moondream is a small vision language model designed to run efficiently everywhere.

Repository: localaiLicense: apache-2.0

kwaipilot_kwaicoder-autothink-preview
KwaiCoder-AutoThink-preview is the first public AutoThink LLM released by the Kwaipilot team at Kuaishou. The model merges thinking and non‑thinking abilities into a single checkpoint and dynamically adjusts its reasoning depth based on the input’s difficulty.

Repository: localaiLicense: kwaipilot-license

Page 1 of many